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Abstract
This article deals with the electric double-layer force between a charged
colloidal sphere and a charged dielectric planar wall. To introduce the
problem and to uncover the basic physics involved, we start by first reviewing
the effective wall–colloid potentials that one obtains in linearized Poisson–
Boltzmann theory. The important key concepts in this context are: charge
renormalization, confinement effects, salty interfaces, and image-charge effects
due to the dielectric discontinuity at the wall. Starting from the potentials
derived in linear theory, we then come to approximate wall–colloid potentials
that are valid also in the parameter regime where the non-linearity of the
Poisson–Boltzmann equation becomes important. The range of validity of these
potentials is systematically investigated by comparing them with potentials
based on the exact numerical solution to the Poisson–Boltzmann equation. The
important parameters of the calculation are the salt content of the electrolytic
solution, the colloidal sphere radius, and the surface charge densities on both
the wall and the colloid. We then briefly discuss what additional effect
a concentrated suspension of such colloidal spheres has on the interfacial
colloid, and close with a short report of an optical experiment that has
recently been performed to measure the approximate wall–colloid potentials
investigated here.

1. Introduction

This article is concerned with the apparently simple question of how a charged colloidal sphere
inside an electrolytic solution interacts with a planar wall which has a dielectric constant that
is different from that of the solution and which may or may not bear any surface charges. That
this is, in fact, a rather complicated question, containing many theoretically interesting aspects,
becomes obvious from the following list of observations:

(i) The fixed charges on both the colloidal sphere and the wall are screened by the salt ions
of the solution; a layer of mobile ions of the electrolyte (double layer) forms near the
interface and the colloidal sphere [1, 2]. The electrolyte ions of this double layer will
readjust themselves in response to any change of the colloid–wall separation.
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(ii) Any charged object near an interface between two media of different dielectric constants
will experience a force due to induced polarization charges at the interface. This gives
rise to image charges which add to the normal interfacial charges. Image charges have
the same effect as real charges and will therefore affect the structure of the double layer.

(iii) The Poisson–Boltzmann (PB) equation governing the whole problem is a differential
equation with a complicated non-linearity caused by exponential factors. It can only be
solved numerically.

(iv) Even when we know the complex density distribution of small ions around and between
the sphere and wall for every possible wall–colloid distance, we still have a long way
to go: from this density distribution, one can obtain the grand potential of the system.
This quantity, when seen as a function of the colloid–wall distance, can be regarded as
the effective colloid–wall interaction potential where the term ‘effective’ is a reminder
of the fact that an initial multi-component system has been reduced to a smaller system
consisting of just the sphere and the wall. Such effective colloid–wall potentials are what
we want to calculate in this article.

To show why the subject of this article, besides being interesting, is also of practical
interest, we content ourselves with just recalling a few recent experiments where charged
colloids (or biocolloids) near an interface play a major role. There are, first, a long series of
optical experiments where the effective pair potentials between colloids near a glass surface
have been measured, with the surprising finding that colloids may attract each other, even
though they bear like charges [3]. This unexpected attraction has caused a long theoretical
debate on whether or not this can be explained within the PB theory [4], and has only recently
been consistently interpreted in terms of hydrodynamic interactions [5]. A second set of
papers related to our problem are concerned with the adsorption of charged polyelectrolytes,
specifically DNA molecules, on fluid or glass-supported cationic lipid bilayers [6], where
image-charge effects might be of considerable importance [7]. We finally mention TIRM (total
internal reflection microscopy), a new optical method based on the evanescent wave near an
interface, designed to measure the interaction between a single colloidal particle and a wall [8],
which in many respects can compete with more established methods for measuring forces such
as methods using the surface force apparatus [9]. We will report on a TIRM experiment in the
last section of this paper; another interesting example can be found in reference [10] where
the effective interaction between a biological cell and a smooth surface has been studied using
the TIRM method. Other works—and this list is by no means comprehensive—related to our
subject of colloids near interfaces are studies of the structural properties of interfacial colloidal
suspensions [11], wall-induced layering in colloidal hard-sphere glasses [12], and supercooled
colloidal suspensions [13]; see also reference [14]. On the theoretical side, we mention a string
of papers on image-charge effects on colloidal crystal ordering [15], the huge field of lipid–
protein interaction—see for instance [16]—and older papers on colloidal aggregation [17] and
melting [18] affected in some ways by walls.

We here solve the PB equation numerically to determine the mean-field electrostatic
potential and, from it, the effective interaction potential between the colloid and the wall.
We compare the numerically determined potentials with approximate analytical potentials and
check systematically in what parameter region these potentials can be used. Carnie and co-
workers (see e.g. references [19–24]) have made quite an extensive study of the interaction
energy and force of two similar or dissimilar spheres in an electrolyte including recently [23] a
sphere and a plate. In most of these studies, they have compared results obtained by numerical
solution of the full PB equation with those from approximate models: the linear superposition
approximation, the Derjaguin method, etc.
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Warszynski and Adamczyk [25], also treating two dissimilar spheres and sphere/plate
interaction, have gone a step further in their numerical scheme, to include the electric field
distributions within the particles and plate (wall) which are usually neglected by most workers,
as in the present paper. Bhattacharjee and Elimelech [26] used a method that they referred to
as surface element integration to determine the van der Waals and electrostatic double-layer
interaction between a particle (a sphere in particular) and an infinite plate, starting from the
well-known energy of interaction between two infinite parallel plates. Their method, which
basically integrates the flat-plate interaction energy per unit area over a planar projected area
on the particle surface, seems to agree well with a numerical solution of the problem and
improves on the conventional Derjaguin method.

In the three studies [23,25,26], the PB equation has been solved in the sphere/wall geometry
and compared to approximate models that are often themselves based on numerical solutions.
Our philosophy here is somewhat different: we take less sophisticated analytical potentials,
to be found already in the classical book on colloids by Verwey and Overbeek [27], which
have however the advantage of being more handy for experimentalists as they are of purely
analytical form. This, in conjunction with the fact that we have systematically explored the
range of validity of these potentials, should make this paper useful primarily to those who
need a quick estimate of the wall–colloid interaction energy but not the best accuracy possible.
Another feature of this paper might be seen in that we emphasize the role played by image
charges and that, contrary to other studies [23,25,26], ours takes account of their contribution
to the effective wall–colloid interaction potential, which results in a non-zero interaction even
when the wall is uncharged.

The calculation based on the non-linear PB equation is presented in section 4. Since
the purpose of the present paper is not only to present new results, but also to convey a more
profound insight into the basic physics of the problem, we give in section 3 a detailed discussion
of older works on the effective colloid–wall interaction based on the linearized PB theory. We
begin with section 2 which is devoted to clarifying the concept of ‘effective interactions’.

2. Exposition of the problem: the concept of effective interactions

We consider a charged spherical colloid in the vicinity of a planar interface between an
electrolytic solution and a dielectric substrate. At this interface, there can be additional
interfacial charges. The electrolyte is assumed to be unbounded; that is, there is a reservoir of
electrolyte ions coupled to our system, so the number of ions in the system is not fixed. The
thermodynamic variables that are fixed are thus: the temperature (given by β = 1/kT ),
the chemical potential of the salt ions µs , and the volume V , so the ensemble that we
work in is the grand-canonical ensemble with the grand potential � being the relevant
thermodynamic potential. The principal question guiding us through this study then is: how
does the grand potential of the whole system depend on the distance h of the colloidal sphere
from the interface? This function can be regarded as the effective colloid–wall interaction
potential [28, 29].

Our strategy for calculating this effective potential is (i) to solve the mean-field PB
equation [30] for a fixed colloid–wall distance h to determine the electrostatic mean-field
potential φ, and (ii) to use this potential to evaluate the grand potential. Repeating this
procedure for varying h, we then obtain the effective interaction potential as a function of
h. Specifically, we have to solve the following PB equation for the normalized potential φ:

∇2φ = κ2 sinh φ (1)

where φ = eβψ with ψ being the usual electrostatic potential and e the elementary charge.
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κ2 = 8πλBcs is the screening parameter characterizing the electrolytic solution, λB = e2β/ε

is the Bjerrum length, and ε is the dielectric constant of the solvent. In our grand-canonical
description, the bulk concentration cs of electrolyte ions (assumed to have a valency of one)
is a fixed input parameter of the calculation, and is directly related to the chemical potential
of the salt, βµs = log cs�3, with �3 being the usual thermal wavelength. The local density
of positive/negative salt ions can be obtained from ρ± = cse∓φ , so the net charge density at a
given point �r in the solution is ρ(�r) = ρ− −ρ+, and the ion number density is n(�r) = ρ− +ρ+.

The colloidal sphere of radius a bears Z negative surface charges, while the confining
wall has a surface charge density of −eσw. These charges, which are fixed charges, in contrast
to the salt ions which are mobile charges, enter the problem through the boundary conditions.
Let us call the boundary given by the z = 0 interfacial wall ∂Gw, the surface of our colloid
∂Gc, the region of the electrolytic solution between the two surfacesG, and the negative z < 0
half-space G<; see figure 1. At ∂Gc we then require the normal component of the electric
field to be identical to the colloidal surface charge density σc = Z/4πa2 (the constant-charge
boundary condition), while at ∂Gw we must demand that the normal component of the electric
displacement field jumps by the amount 4πελBσw. In addition, we assume that the dielectric
constant of the colloid is zero and that the potential vanishes at infinity.

y

z

x

nw

Substrate wall

nc

h

a

Substrate Interface Electrolyte Colloid

ε ε

G G G< w cG

Figure 1. Our system: a colloid of charge −Ze and radius a inside an electrolytic solution of
dielectric constant ε, a distance h away from a substrate of dielectric constant ε′.

The PB equation, along with these boundary conditions, then leads to the following
boundary value problem (BVP) for φ:

∇2φ = κ2 sinh φ �r ∈ G
∇2φ = 0 �r ∈ G<
ε�nw ∇φ∣∣

z=0+ − ε′ �nw ∇φ∣∣
z=0− = 4πελBσw �r ∈ ∂Gw

�nc ∇φ = 4πλBσc �r ∈ ∂Gc
φ = 0 at ∞

(2)



Charged colloids near interfaces 4805

where ε′ is the dielectric constant of the substrate. �nw and �nc are two unit vectors directed
normal to the surfaces of the wall and colloidal sphere, respectively, and pointing towards G.
Since there is still rotational symmetry about the z-axis (see figure 1), equation (2) here is a
differential equation in two spatial variables.

Once we know φ, we can proceed to calculate the grand potential of our system:

β� = 1

8πλB

∫
G

d�r (∇φ)2 +
ε′/ε

8πλB

∫
G<

d�r (∇φ)2 +
∑
α=±

∫
G

d�r ρα(log ρα�
3 − 1)

− βµs
∫
G

d�r (ρ+ + ρ−) +
∫
G

d�r 2cs − βWSE. (3)

The first two terms give the energy stored in the electric field inG andG<, the third gives the
entropy of mixing of the microions, and the fourth accounts for the fact that the number of ions
in the system varies. The last term, βWSE , is the energy of the Z colloidal charges in their
own Coulomb potential (=Z2λB/2a if a is finite), a constant which we have subtracted for
later convenience. On substitution of ρ± = cse∓φ and βµs = log cs�3, equation (3) becomes

β� = 1

8πλB

[∫
G

d�r (∇φ)2 +
ε′

ε

∫
G<

d�r (∇φ)2 + 2κ2
∫
G

d�r (
φ sinh φ − cosh φ + 1

)]

− βWSE. (4)

Using Green’s first identity, we can decompose the terms
∫

d�r (∇φ)2, so we have

β� = 1

8πλB

[
−

∫
∂Gw

dS

[
�nw ∇φ∣∣

z=0+ − ε′

ε
�nw ∇φ∣∣

z=0−

]
φ

−
∫
∂Gc

dS �nc ∇φ φ + κ2
∫
G

d�r (φ sinh φ − 2 cosh φ + 2)

]
− βWSE. (5)

This can be further simplified by inserting the boundary conditions of the BVP in equation (2),
which leads to

β�h = −σw
2

∫
∂Gw

dS φh − σc

2

∫
∂Gc

dS φh + cs

∫
G

d�r (φh sinh φh − 2 cosh φh + 2)

− βWSE. (6)

One should be aware of the fact that the position of the boundary ∂Gc in equation (2) still
depends on the colloid–wall distance h. Thus, for one specific value of the external parameter
h, we have one BVP to solve. In equation (6), we therefore wrote φh to stress that φ still
depends parametrically on h, and so does the grand potential. We can now define the effective
wall–colloid interaction potential βV (h) as the total change of the grand potential when the
colloidal sphere is brought from h = ∞ to a finite distance h:

βV (h) = β(�h −�∞). (7)

With the numerical solution of equations (2) inserted in equations (6) and (7), we have thus
arrived at the effective interaction potential in full non-linear PB theory.

3. The interaction potential in linear theory

Due to the non-linearity of the PB equation, the BVP of equation (2) can in general only
be solved numerically. Analytical work is feasible merely in the special case where φ is
everywhere smaller than one, in which case linearization of the BVP of equation (2) becomes
possible. But even then, as we will see soon, further approximation is needed to arrive at
analytical expressions for the effective potential. Nevertheless, we begin by studying the
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linear case, mainly for the reason that the basic features of our problem can best be understood
at this level of approximation. In section 4, we then return to the non-linear theory formulated
in equations (2) and (6).

Linearizing the PB equation in equation (2) leads to the following BVP:

∇2φ = κ2φ �r ∈ G
∇2φ = 0 �r ∈ G<
ε�nw ∇φ∣∣

z=0+ − ε′ �nw ∇φ∣∣
z=0− = 4πελBσw �r ∈ ∂Gw

�nc ∇φ = 4πλBσc �r ∈ ∂Gc
φ = 0 at ∞.

(8)

The grand potential, too, becomes much simpler on linearization, because the volume integrals
in equation (6) vanish due to the fact that φ sinh φ − 2(cosh φ − 1) ≈ 0 if φ < 1. This leaves
us with

β� = −σw
2

∫
∂Gw

dS φ − σc

2

∫
∂Gc

dS φ − βWSE. (9)

We see that, in linear theory, the grand potential reduces to just the electrostatic energy of the
system—that is, the electrostatic energy which the colloidal (σc) and interfacial charges (σw)
have in the mean-field potential φ. Carnie et al solved this BVP and calculated the effective
colloid potential from it [22], which they later on compared with the numerical solution of
the full PB equation [23]. Related studies on the double-layer interaction of two spheres in
linearized theory can be found in [19, 24, 45].

3.1. The uncharged interface: image-charge and confinement effects

The case of an uncharged interface (σw = 0) already reveals most of the physical content
subsumed in the effective wall–colloid pair potentials. That there is a non-vanishing effective
potential even in this case might at first seem surprising, but it becomes obvious if one realizes
that the ionic double layer surrounding the colloid is heavily distorted from its usual bulk shape
by the presence of the wall that is impenetrable to the ions. In addition to this confinement
effect, we have to expect image-charge effects arising from the dielectric discontinuity across
the interface. We now aim to discuss both effects by considering the case of a colloid near an
uncharged wall.

Since the BVP of equation (8) still poses severe problems due to the complicated geometry
of the region G, i.e., the shape of the boundaries ∂Gc and ∂Gw, we simplify the problem a
little further, and replace the colloidal sphere of finite size by a fixed point-charge ion—an
approximation that is applicable when the particles are separated by distances much larger
than their radii. For such a point charge, the linearized PB BVP of equation (8) takes the form

∇2φ = κ2φ + 4πλBZ
[
δ(h− z)δ(x)δ(y)] �r ∈ G

∇2φ = 0 �r ∈ G<
ε�nw ∇φ∣∣

z=0+ − ε′ �nw ∇φ∣∣
z=0− = 0 �r ∈ ∂Gw

φ = 0 at ∞

(10)

where we used the fact that σc = Z/4πa2. This BVP has been solved by Stillinger [31], and
independently by Schmutzer [32]. The Stillinger solution for the potential around a reference
point ion of charge −Ze at the position h (see figure 1) reads

φSth (s, z) = −ZλBκ
∫ ∞

0
dl J0(κsl)

l

l̃
(e−κ|z−h|l̃ + χ̃(l)e−κ(z+h)l̃) (11)



Charged colloids near interfaces 4807

where s2 = x2 + y2 and l̃ = (1 + l2)1/2. J0 is the usual spherical Bessel function and the
quantities χ̃(l) and χ are given by

χ̃(l) = εl̃ − ε′l

εl̃ + ε′l
= α(l̃ + l)− l
α(l̃ − l) + l

(12)

and

χ = ε − ε′

ε + ε′ = 2α − 1 (13)

where α = ε/(ε + ε′) gives a relation between the dielectric constants of the electrolytic
solution and the substrate. The structure of the Stillinger potential can best be understood in
the infinite-dilution limit κ → 0, when equation (11) becomes [31]

φ0
h(s, z) = −ZλB

[
1

|�r − h�ez| +
χ

|�r + h�ez|
]
. (14)

In this limit, there is no screening by salt ions any more, and we are left with the purely
electrostatic problem of a single point charge near a dielectric substrate, which is the classical
test case for the image-charge method [33]. And, indeed, the second term of equation (14)
can readily be identified as the potential due to the image charge at z = −h, while the first
term is just the simple Coulomb potential of our original charge at z = h. This image charge
has a magnitude of χZe. It is easy to verify that φ0 of equation (14) does indeed solve the
BVP of equation (10) in the limit κ → 0, and satisfies, in particular, the complicated boundary
condition at ∂Gw. The Stillinger potential in equation (11) for finite κ has very much the same
structure, with the first term, the direct term, coming from the (now screened) point ion and
the second term, the indirect term, arising from the screened image charge. Consistently with
this association, the first term becomes in the bulk limit (infinite colloid–wall distances) just
the Yukawa potential of the standard Debye–Hückel (DH) theory, while the second vanishes.

In order to arrive at an effective potential, we next need to determine the grand potential
as a function of h. Equation (9) in our case (uncharged wall, point ion) becomes

β�h = −Z
2

lim
s→0,z→h

φSth (s, z)− βWSE. (15)

The Coulomb self-energy βWSE of a point charge diverges, but so does the Stillinger potential
in the limit z → h, s → 0, and their difference remains finite. Therefore, it is better to write

β�h = −Z
2

lim
s→0,z→h

[
φSth (s, z)− φCh (s, z)

]
(16)

where

φCh (s, z) = −ZλB 1

|�r − h�ez| = −ZλBκ
∫ ∞

0
J0(κsl)e

−κ|z−h|l dl (17)

is just the direct Coulomb potential of the point charge, which we have rewritten using the
identity [31]

1

r
= κ

∫ ∞

0
J0(κsl)e

−κzl dl. (18)

Placing equation (17) and (11) into equation (16) and taking the limits, we obtain

β�h = Z2λBκ

2

∫ ∞

0
dl

(
l

l̃
+
l

l̃
χ̃ (l)e−2κhl̃ − 1

)
(19)

which for h→ ∞ becomes

β�∞ = Z2λBκ

2

∫ ∞

0
dl

(
l

l̃
− 1

)
= −Z

2λBκ

2
. (20)
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This latter energy looks familiar from the DH theory, where it is known as the DH self-energy,
i.e., the interaction energy of a point test ion located in the bulk of a symmetric electrolyte and
interacting with its ion atmosphere. With equations (19) and (20) we have finally arrived at
the effective colloid–wall interaction potential:

βVSt (h) = β(�h −�∞) = Z2λBκ

2

∫ ∞

0
dl
l

l̃
χ̃ (l)e−2κhl̃ . (21)

We notice that the integrand depends only on α = ε/(ε+ε′) and κh; it can be evaluated only by
numerical integration. But in the two most interesting limits, α → 1 and α → 0, equation (21)
reduces to simple Yukawa-like energy expressions:

βVSt (h) = Z2λBκ

2

(
e−2κh

2κh

)
if α = 1 (22)

and

βVSt (h) = −Z
2λBκ

2

(
e−2κh

2κh

)
if α = 0. (23)

α → 1 is the limit where the dielectric constant of the substrate, ε′, is so much smaller than
that of the solution (realized, for example, in the case of a glass/water or air/water interface)
that ε′ can be neglected against ε; ε′/ε → 0. The opposite limit, ε/ε′ → 0 (α → 0), describes
the case where a substrate of extremely large dielectric constant is in contact with a solution
of much smaller dielectric constant, e.g., a metal/water interface. In the limit of zero salt
concentration (κ → 0), we know from our discussion of equations (13) and (14) that in the
two limits, α → 1 and α → 0, the point charge has image charges of the same magnitude.
They differ, however, in their charge polarity, having the same polarity when α → 1 and just
the opposite if α → 0. Thus, the point charge at position h sees a potential ±ZλB/2h and
the wall–colloid interaction potential is ∓Z2λB/4h, which is negative if α → 0 and positive
otherwise. A single point charge in water is therefore attracted to a metal surface, but repelled
from an uncharged glass surface. Now, if there are salt ions present (κ > 0), this changes only
inasmuch as the image charge is screened by the salt ions, which produces just the screening
factor e−2κh in the potential, ±ZλBe−2κh/2h, and the interaction potentials then become the
screened Yukawa potentials of equations (22) and (23). These effective potentials can therefore
be understood as the interaction of the point charge with its own screened image charge, an
interaction which is attractive if ε′ � ε and repulsive if ε′ � ε. All other cases, 0 < α < 1,
are covered by the effective potential of equation (21), which when plotted against the distance
from the planar interface always lies between those of equations (22) and (23), as is evident
from figure 2.

In figure 3 we show the effective potential of equation (21) when the point charge nearly
touches the wall (κh = 0.8, 1.0, 1.2), as a function of α. This quantity may be interpreted as
the energy gained or lost in bringing the point ion from infinity to the surface of the wall, and
can be used to make predictions about the adsorption behaviour of colloids on dielectric walls.
We see that adsorption is favoured if α → 0, while desorption is favoured for α → 1, as one
would intuitively predict from our simple electrostatic considerations in the κ → 0 limit. In
his paper, Stillinger presents a similar curve (figure 2 of reference [31]) where the interaction
energy W of the point charge at h = 0 with its ion atmosphere is plotted as a function of
α. The far more important interaction between the point charge and its image has however
been subtracted. This curve shows a monotonically decreasing behaviour, with W changing
its sign from + to − at α = 0.645. From this figure, Stillinger predicts adsorption if α → 1
and desorption if α → 0. This is not correct; it is just the other way round, as we have seen,
and the error is clearly due to the neglect of the direct interaction of the point charge with its
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1.0 1.5 2.0 2.5 3.0 3.5
κh

-0.04

-0.02

0.00

0.02

0.04

βV
St

(h
)/

Z
2 λ B

κ

ε′/ε → 0

ε/ε′ → 0

(e,g. glass/water)

(e.g. metal/water)

α = 1
α = 2/3
α = 1/2
α = 0

Figure 2. The effective colloid–wall interaction potential βVSt (h)/Z2λBκ for various values of
α = ε′/(ε + ε′), calculated in linear theory. The macroion is considered as pointlike (κa = 0).

0.0 0.2 0.4 0.6 0.8 1.0
α

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

βV
St

(h
)/

Z
2 λ B

κ

κh  = 0.8

1.0

1.2

Figure 3. The effective potentials of figure 2 at fixed values of κh, now as functions of α.

image. The same error has been made by Earnshaw [11] who predicts an electrostatic trapping
of colloids at an air/water interface due to an attractive colloid/wall interaction potential. The
discussion given above clearly shows that a colloid in an aqueous suspension will be repelled
from and not attracted to an air/water interface.
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If the substrate has the same dielectric constant as the solution, ε = ε′ (i.e. α = 1/2),
there are no image charges, as we can see from equations (13) and (14). And still, the colloid
is repelled from the wall; see figures 2 and 3. This is accounted for by the fact that the shape
of the colloidal double layer deviates from its perfect spherical bulk shape when the colloid
approaches the wall. This is so because of the presence of a wall which is, though having the
same dielectric constant as the solution, still impenetrable to electrolyte ions. This distortion
will necessarily cost free energy. Therefore, repulsion is to be expected, when the particle
is sufficiently close to the wall for this effect to occur. We thus learn from figure 2 that the
effective wall–colloid interaction is dominated by two effects: the confinement effect, on the
one hand, and the image-charge effect, on the other, which both have a repulsive effect if
α � 1/2, and which compete with each other if α < 1/2 (this means that a case is conceivable
where the effective wall–colloid interaction is repulsive in spite of an attractive interaction
between the charge and its image).

Both effects are usually present, though their relative importance for the effective potential
is strongly dependent on α. To discriminate between one effect and the other, one has to
choose a substrate having the same dielectric constant as the solution, thus eliminating all
image charges and leaving just the confinement effect.

The potential given in equation (11) is also well known in the theory of the electric double
layer, where a simple electrolytic solution (without colloid!) near an interface is studied. The
starting point of the so-called weak-coupling theory for the point-ion model of the double
layer [35] is just the BVP of equation (10), with the important difference that the screening
parameterκ appearing in equation (10) itself depends on the density profile to be calculated [36].
This set of equations can only be solved iteratively, and to lowest order one finds just the
Stillinger potential, equation (11)—see [36,37]—which gives the first, crude representation of
ion–ion correlations in a double layer. Most of the discussion on image-charge and confinement
effects is usually also in this context and can be found in good review articles on double-layer
theory—for example in [35]; it is not new, nor are the potentials of equations (22) and (23),
which appeared in the literature as early as 1924 in studies by Wagner [38] and Onsager and
Samaras [39] on surface tension of electrolytes.

3.2. The uncharged interface: renormalizing the colloidal charge

We now move on to correct the potential around the test point ion to take account of the finite
size of a colloid. This follows from renormalizing the colloidal charge from Z → Z∗ = Z/g,
a standard trick known from the theory of effective colloid/colloid interaction in bulk [28].
The primary error that is involved in representing the colloid by a point ion is that it allows
microions to be in the region r < a (r is the distance from the centre of the colloid, a its
radius), where in reality they are excluded. If one determines the total charge (colloidal charge
minus the total charge of salt ions) inside a virtual sphere of radius a, one obtains a chargeZvirt

which is only a fraction g of the colloidal point charge Z, Zvirt = gZ. The renormalization
trick now consists of the idea of taking a larger value Z/g for the colloidal point charge, so
that the total charge of all ions inside the sphere of radius a becomes Zvirt = gZ/g = Z,
i.e. the actual charge of the colloid. Then we can take this virtual sphere of effective charge
Z as representing our colloidal sphere of radius a. This should work well as long as the ion
distribution around the point charge is essentially spherical, because the electric field outside
a charged sphere contains no information about the field-producing distribution of ions inside
the sphere; any spherically symmetrical distribution of the same total number of ions inside a
has the same field at r > a.
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Let us start by considering the bulk situation (h → ∞), where the electrostatic potential
around our colloidal point charge reduces to the usual DH potential:

φ(r) = −ZλBe−κr

r
(24)

and the ion charge density becomes

ρ(r) = −2csφ = Zκ2e−κr

4πr
. (25)

The net charge inside the virtual sphere is hence

Zvirt = g∞Z = Z − 4π
∫ a

0
ρ(r)r2 dr (26)

which leads us to the familiar result

g∞ = 1 + κa

eκa
. (27)

Translating these ideas now to the situation where h is finite, we have to carry out a
two-dimensional integration to determine the net charge inside the virtual sphere, since the
Stillinger potential depends on two variables, s and z (see equation (11)):

Z(1 − gh) = 2π
∫ h+a

h−a
dz

∫ b(z)

0
s ds ρh(s, z) (28)

with ρh(s, z) = −2csφSth (s, z) which is derived from the Stillinger potential and b(z) =√
a2 − (z− h)2. Using the integral identity∫ β

0
J0[αx]x dx = β

α
J1[αβ] (29)

equation (28) can be reduced to

gh = 1 −
∫ ∞

0
dl
I (l)

l̃
(1 + χ̃(l)e−2κhl̃) (30)

with

I (l) = 2
∫ A

0
dξ (A2 − ξ 2)1/2J1[l(A2 − ξ 2)1/2]e−l̃ξ (31)

where ξ = κ(z − h) and A = κa. For ease of evaluation, we take the limiting case χ̃(l) = 1
(α → 1) in equation (30) and solve the resulting equation for gh by numerical integration. In
figure 4, gh is shown for various values of κa. It rises from the wall (interface) and approaches,
as it should, the bulk limit g∞ as κh becomes large. The first value of each curve corresponds
to a situation where h = a, i.e. where the particle touches the wall. Interestingly, this first value
becomes first smaller with increasing κa, up to κa = 1, and goes up again for κa > 1. This
behaviour allows us to draw the conclusion thatgh will never deviate by more than a few per cent
from g∞, and it is thus not only a convenient, but also a very good, approximation to replace
gh by the much simpler expression for g∞. This approximation we will henceforth adopt.

We can best summarize the results obtained so far by repeating the effective wall–colloid
interaction potential for the case α = 1. This is a case that is naturally of prominent interest in
our context, since colloids in most experiments are suspended in aqueous solutions, and water
has an extraordinarily large dielectric constant in comparison to practically every possible wall
material, so making the assumption that ε′/ε → 0 is almost always justifiable for colloidal
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Figure 4. The ratio of the macroion renormalizing factor near the interface (gh) to that of the bulk
(g∞), versus the macroion–wall distance κh, for α = 1.

systems. In the following we shall therefore repeatedly focus on this important limiting case.
Inserting Z/g∞ with g∞ from equation (27) into equation (22), we obtain the potential

βVSt (h) = Z2e2κaλBκ

2(1 + κa)2

(
e−2κh

2κh

)
(32)

which demonstrates that increasing particle size results in increased repulsion from the wall.
The potential in equation (32) is just half of the usual repulsive double-layer potential of DLVO
theory between two like-charged spheres that are separated by a distance 2h from each other.
This is clear: the BVP given in equation (8) reveals that the normal component of the electric
field at the interface is zero in our case where ε′/ε = 0. This is exactly the same situation
as on the mid-plane between two identical spheres. In other words, the electric field lines
on the positive side of the symmetry plane are identical in the two cases (colloid/wall and
colloid/colloid). The only difference is that in the colloid/colloid case the total volume filled
by the electrolytic solution is just twice the volume in the colloid/wall case. Since the grand
potential is obtained from the integration over this volume, this produces just a factor 1/2,
which then remains the only difference between equation (32) and the effective colloid/colloid
interaction in the bulk.

3.3. The charged interface: the superposition principle

After having considered the case where the surface charge density at the wall is zero (σw = 0),
we now return to the starting point of this section, the BVP in linear theory, formulated in
equation (8). The great advantage of linearization of the PB equation is that one can make use
of the superposition principle; that is, if one knows the electrostatic potentialφ for a single point
charge, one can calculate the potential for an arbitrary charge distribution just by superposing
the point-charge potentials. Therefore, we can reuse the Stillinger potential (which is just the
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potential for a single point charge) as a Green’s function for the more complex distribution of
fixed charges appearing in the BVP of equation (8).

To be specific, let us assume that the single point charge, which in the Stillinger BVP of
equation (10) has been located at z = h, is now at the position (hx , hy , hz). This point charge
we now assume to have a charge +e. The Stillinger potential, given in equation (11), has to be
modified then in the following obvious way:

φGr�h (x, y, z) = λBκ
∫ ∞

0
dl J0(κl[(x − hx)2 + (y − hy)2]1/2)

l

l̃
(e−κ|z−hz|l̃ + χ̃(l)e−κ(z+hz)l̃ ).

(33)

This function is in fact the Green’s function of our problem, equation (8); see [36,37]. Given an
arbitrary distribution of fixed charges σ(�h), we can now generate the corresponding potential
by convoluting σ(�h) with this Green’s function:

φ(x, y, z) =
∫
φGr�h (x, y, z)σ (

�h) d�h. (34)

For example, setting σ(�h) = −Zδ(hx)δ(hy)δ(hz − h) and performing the integration in
equation (34) leads us back to the original Stillinger potential, given in equation (11). For
the homogeneously charged interface at z = 0, we demand σ(�h) = −σwδ(hz), which when
inserted in equation (34) gives a potential

φσw(x, y, z) = −4π
σwλB

κ
e−κz (35)

that can easily be verified to be a solution to the BVP of equation (8) when there is no colloid.
We note, in passing, that equation (35) is independent of ε′, which is reasonable since the
electric field at z < 0 is zero and the dielectric property of the wall material thus irrelevant.
The general solution to the BVP in equation (8) may be obtained from convoluting

σ(�h) = −σwδ(hz)− σcδ(
√
h2
x + h2

y + (hz − h)2 − a) (36)

with the Green’s function, equation (33)1. Since this is a rather involved undertaking [19, 22]
leading again to non-analytical expressions, we must once more be content with the point-
charge assumption for the colloid:

σ(�h) = −σwδ(hz)− Zδ(hx)δ(hy)δ(hz − h) (37)

resulting in a potential which is nothing but the sum of the potentials of equations (11) and
(35), φSth and φσw .

To obtain the effective potential, we need to look back at equations (7) and (9) which lead
us to

βV (h) = βVSt (h)− σw

2

∫
∂Gw

dS φSth − Z

2
φσw(h) (38)

where the first term is the effective potential in the case of an uncharged wall, given in
equation (21), while the second and third terms give the interaction of the interfacial charges
with the field produced by the colloidal point charge and vice versa. These two latter terms
are equal, so

βV (h) = βVSt (h)− Zφσw(h) (39)

1 This is not quite correct, since we assumed a vanishing dielectric constant inside the colloidal sphere in our boundary
value problem of equation (8), while a superposition of potentials of point charges fixed at the surface of the colloids
implies that the dielectric constant inside the sphere is the same as that outside.
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which for α = 1 (ε′/ε → 0) takes the form

βV (h) = Z2λBκ

2

(
e−2κh

2κh

)
+ Z 4π

σwλB

κ
e−κh. (40)

From this expression it is evident that the colloidal point charge interacts with two well-
separated charge distributions at the same time: with the interfacial charges, on the one hand,
and the image charge, on the other. Both are screened, but one of them is a distance h away,
and the other 2h. The second term (∼e−κh), describing the direct interaction of the point
charge interacting with the unperturbed double layer of the charged wall, will therefore be the
dominant one for larger distances. The image-charge term, though having a pre-factor that
goes as Z2, becomes important only for small distances and small surface charge densities σw.
We expand on this further, below. Again, renormalization of the colloidal charge is useful:

βVLIN(h) = Z2λBκ

2(1 + κa)2

(
e−2κ(h−a)

2κh

)
+ Z 4π

σwλB

κ(1 + κa)
e−κ(h−a). (41)

Netz, in a recent paper, derived the Green’s function of equation (33) within a field-
theoretic formalism [34]. He considered the more general case, where there are mobile ions
within the interface itself (salty interface) and two solutions with different salt concentrations
and dielectric constants on either side of the interface. We here just want to mention the effect
produced by the salty interface. Such a two-dimensional salt solution is realized, for instance,
by membranes consisting of cationic and anionic lipids [6].

To allow for a salty interface, the only thing to be changed is the function χ̃ in equation (12);
the rest of the Green’s function in equation (33) remains the same; see reference [34]. If κ= is
the screening constant of the 2D interfacial salt, the function χ̃ now becomes

χ̃=(l) =
(
εl̃ − ε′l − κ=

κ
ε

)/(
εl̃ + ε′l +

κ=
κ
ε

)
. (42)

Approximating the colloid again by a point charge, we can repeat the scheme outlined in the
previous sections, and will again arrive at the effective potential of equation (21), except that
χ̃ is now to be replaced by χ̃=. The integration over the variable l can again be performed
only in certain limiting cases. For α = 1, one finds the effective potential

βV=(h) = Z2λBκ

2

(
e−2κh

2κh

)(
1 − 2κ=

κ= + κ

)
(43)

which is to be compared with equation (22) of the Stillinger case. If, in addition, one
wants to allow for interfacial charges, one obtains an effective potential as in equation (40),
with βV=(h) of equation (43) replacing the first term. We see that the repulsive Stillinger
effective potential now competes with an attractive potential that arises from the mobile ions
in the interface. These ions show a strongly inhomogeneous distribution centred at the point
(x = 0, y = 0) on the interface, in order to optimize the screening of the point charge. Though
the interface on average is still neutral, this accumulation of ions at (x = 0, y = 0) leads to
additional electrostatic attraction between the wall and the colloid. Equation (43) states that
beyond a certain concentration of ions in the interface (κ= > κ) this can actually result in an
attractive wall–colloid interaction. Thus, the repulsive effect of image charges tends to be less
pronounced if there are mobile screening ions in the interface, but the distance dependences
(∼e−2κh/2κh) of the two effects are the same.

4. The interaction potential in non-linear theory

The BVP that we actually set out to study is that of equation (2). Due to its non-linear nature
it cannot be solved analytically (see however reference [24]). It is therefore impossible to give
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an analytical expression for the effective wall–colloid potential which is valid in a parameter
regime where the non-linearity becomes important. On the other hand, the condition φ < 1
for linearization is rather restrictive, and most experiments are carried out in a parameter
regime where this condition is not fulfilled. One way out of this problem is to make use of the
effective-charge concept, used already in the last section to take account of the finite size of the
colloid. Reusing the outer form of the potential obtained in linear theory, one can renormalize
the charge yet again, for the purpose of including—on a rather phenomenological level—non-
linear effects [28]. Another way to go beyond linear theory is to use the few known solutions
to non-linear problems in other geometries (for example, planar wall) in order to improve
on the potentials calculated in linear theory. That is what we want to do now, starting from
equation (40), which is valid for the case α → 1 (this case is the only one that we consider
in this section). Since we can calculate the full numerical solution of equation (2) and with it
the effective potential in non-linear theory, equation (6), we can test in what parameter regime
and to what extent these augmented potentials work.

The PB equation for the sphere/plate geometry has been solved by others before [23,25,26].
The work of Stankovich and Carnie [23] can be regarded as the extension of a previous study
by these authors on double-layer forces between similar spheres [21]. In this paper the validity
of classical theories of effective colloidal pair potentials is checked against accurate numerical
results, as has been done in a similar way in [40]. Earlier numerical studies of the PB equation
for two spheres can be found in [41, 42], where approximate interaction potentials [43] have
been checked, but Carnie et al in [21] were the first to really make detailed quantitative
statements regarding the ranges of validity of different approximations.

4.1. Approximate potentials and their regimes of validity

The BVP of equation (2) can be solved if there is no colloid but just a planar charged wall, and
the solution (Gouy–Chapman solution [44]) is

φGC(z) = 4 arctanh(e−κz tanh(9w/4)) (44)

with 9w being the potential at the wall. The derivative of this potential with respect to z at
z = 0 is −2κ sinh9w/2, which according to equation (2) must be equal to 4πλBσw. This
gives the Graham equation [9,44] relating the surface charge densities to the surface potentials:

4πλBσw/c = −2κ sinh9w/c/2. (45)

For later usage, we have already introduced the subscript c referring to the colloidal charge
densities and surface potentials. Using equation (45), we introduce another abbreviation:

γw/c = |tanh9w/c/4| = tanh

[
1

2
arcsinh

(
2πλBσw/c

κ

)]
. (46)

If κz > 1, equation (44) becomes

φGC(z) = −4γwe−κz (47)

because γw cannot be larger than one. Note that if 9w < 1, equation (47) reduces to
equation (35).

The second term in the interaction potential obtained in linear theory, equation (40), is
just the electrostatic energy of a point charge Z in the unperturbed double layer of the charged
wall. We can go beyond linear theory and improve this interaction potential just by taking
φGC(z) of equation (47) instead of φσw(z), equation (35), in expression (39). This, along with
the usual renormalization of charge Z/g∞ (g∞ from equation (27)), leads to the potential

βVGCH (h) = Z2λB

2(1 + κa)2

(
e−2κ(h−a)

2h

)
+
Z4γw
1 + κa

e−κ(h−a) (48)
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which henceforth we call the Gouy–Chapman-based (GCH-based) potential. If the surface
potential of the wall becomes small, βVGCH (h) reduces to βVLIN(h) of linear theory,
equation (41), because φGC(z) reduces to φσw(z).

If κa > 1, we can use equation (47) yet again to represent also the double layer surrounding
the colloidal particle. Formally, this can be done by renormalizing the charge anew. Starting
with equation (24) with Z replaced by Z∗/g∞ and requiring φ(a) to be just φGC(0) of
equation (47), one finds Z∗ = 4γc(1 + κa)a/λB ; see reference [28]. Using this Z∗ instead of
Z in equation (48), one obtains

βVDJG(h) = 4γ 2
c a

λB
e−2κ(h−a) +

16aγcγw
λB

e−κ(h−a). (49)

The conventional way to derive equation (49) is to calculate the free energy of an electrolytic
solution in between two parallel plates having surface charge densities σw and σc and then to
integrate over these energies to account for the curvature of the colloidal sphere (the Derjaguin
approximation [9,27]). However, we emphasize that this derivation gives only the second term
in equation (49), while ours leads also to the image-charge interaction terms. In the following,
we will refer to the potential of equation (49) as the Derjaguin-based (DJG-based) potential.

The derivation of the potentials in equations (48) and (49) might appear rather ad hoc, and
it is therefore an advantage that we can calculate correct mean-field interaction potentials to test
the validity of VGCH (h) and VDJG(h). The most prominent deficiency of these two potentials
is an obvious inconsistency: in just adding the image charge to the direct interaction one
has still relied on the superposition principle that is strictly valid only in linear theory, while
introducing at the same time the double-layer potential of the non-linear Gouy–Chapman
theory. One should therefore expect a good agreement with the potentials derived from PB
theory only if the non-linearity is weak. In the highly non-linear regime, this inconsistency is
almost bound to produce a substantial error, and, as we will see, the case can occur where it is
even better to ignore the image-charge contribution than to include it in this inconsistent way.

We have now introduced four interaction potentials based on approximations that are valid
in different parameter regimes. These areVGCH (h) of equation (48),VDJG(h) of equation (49),
VLIN(h) of equation (41), and, included in the latter, the Stillinger potential VSt (h) for the
neutral wall, equation (32). By comparing each of them with the exact PB solution obtained
from equations (2) and (6) (see the appendices), we now want to find out for what regions
of parameters these potentials are reasonably good approximations to the correct mean-field
potential. There are again four parameters on which the four potentials depend, two specifying
the surface charge densities of the wall and the colloid, and two for the size of the colloid and
its distance to the wall, both in units of 1/κ . While the latter two parameters are therefore just
κa and κh, the first two are best expressed in terms of surface potentials, 9c and 9w, which
can be obtained from equation (45) for any given pair of surface densities. The parameters9c
and 9w are only used here for convenience and are not intended to imply anything about the
boundary conditions; we reiterate that we used constant-charge boundary conditions in all of
our calculations. For equation (48), we need a value for ZλBκ , which is also specified by 9c
using σc = Z/4πa2, ZλBκ = 2(κa)2|sinh9c/2|. To quantify the accuracy of the potentials
under investigation, we define the relative percentage error

% Error =
(

analytical − numerical

numerical

)
× 100%. (50)

This equation will reveal where the approximate theories overestimate (positive values) the
interaction and where they are underestimated (negative values). Results are presented for
various9w:9c ratios up to 4:4, for particle radius κa from 1 to 10 and minimum wall–particle
distance κ(h− a) up to 5.
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The Stillinger potential, VSt (h). We begin the presentation of our results again with the
case of an uncharged wall and concentrate on VSt (h) of equation (32) (which is identical to
VGCH (h) and VLIN(h) when 9w = 0). In figure 5(a), we compare this potential with the
PB-based potential for 9c = 1.0, 1.5, 2.0 taking a fixed value for κa of 5.0. Evidently, the
Stillinger potential tends to systematically overestimate the correct potential. To quantify this
error, we used the curves of figure 5(a) and calculated from equation (50) the percentage error
for all three values of 9c; the results are shown in figure 5(b). For 9c = 1.0 the agreement
between the PB-based potential and VSt (h) is better than 10% for nearly all wall–colloid
distances (κ(h − a) > 0.6). Recalling that 9 = 1 marks the value where the non-linearity
becomes important, this is what one would have expected for the Stillinger potential, since it is
derived in the linear approximation. For larger values of9c, going up in the weakly non-linear
regime only, we see that the Stillinger potential soon becomes rather poor, with a percentage
error as high as 30% at all wall–colloid distances for a value of only 9c = 2.0.
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Figure 5. Uncharged wall, κa fixed: comparison of the effective wall–colloid potentials based on
(i) an approximate potential, equation (32), and (ii) the solution to the full PB equation (constant-
charge boundary conditions). Different values of the reduced surface potential 9c of the colloid
are considered. (a) The interaction potential, 4πλBκβVSt (h), versus the wall–colloid minimum
separation, κ(h − a). (b) The accuracy of the effective potentials in (a), percentage error versus
κ(h− a).

So far we have just considered the case κa = 5. To get a more systematic overview of the
accuracy of VSt (h), in particular for different combinations of κa and κh, we now introduce a
different form of presentation of our data, used first by Glendinning and Russel [45] and later
extensively by Carnie et al [19,21]. It is that of indicating in the parameter space (κa, κh) those
regions where the percentage error is less than 10%. In figure 6, we have plotted these lines of
10% error for the Stillinger case, for the three values of9c already used in the previous figure
(9c = 1.0, 1.5, 2.0). Each line in this plot separates a region in the (κa, κh) space where the
error of VSt (h) is less than 10% from a region where it is greater the 10%. In this plot and
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Figure 6. Uncharged wall, κa varies: regions in the (κa, κh) plane where the error of the
approximate potential, equation (32), is below 10%. Arrows point to the regions with under
10% error. The values of 9c are the same as in figure 5.

all those of this type that follow, the arrows always point into the region where the error is
below 10% and thus where the potential investigated is a reasonably good approximation to the
PB-based potential. Since the Stillinger potential VSt (h) depends merely on three parameters
(κa, κh, and 9c since 9w = 0), figure 6 contains information on the error of VSt (h) for all
possible combinations of parameters.

We produce such contour diagrams from error curves like those of figure 5(b). For
example, the error curve for 9c = 1.0 in figure 5(b) is between −10% and +10% for
κ(h − a) > 0.6, which is consistent with the solid line of figure 6 going through the point
(κa, κ(h−a)) = (5.0, 0.6) and with the arrow on the solid line pointing into the region where
κ(h − a) > 0.6. Figure 6 shows clearly that the Stillinger potential, equation (32), produces
an error smaller than 10% for almost all values of κa as long as 9c � 1 and κ(h− a) > 0.6.
Thus we can make the general statement that the Stillinger potential is within 10% error over
the whole linear regime (9c � 1) just as long as κ(h− a) > 0.6. For larger values of9c, this
potential soon fails, as we have already noticed in figure 5. For a moderately high value of the
surface potential of only 9c = 2.0, Vst (h) has an error below 10% only if κa is rather small
(κa < 1)—see the dotted line in figure 6—and this is true for all colloid–wall distances. For
even higher values of9c, the region of validity of the Stillinger potential in the (κa, κh) plane
will become even smaller, and at 9c = 3.0 there is no point left in the (κa, κh) plane where
Vst (h) has an error below 10%.

The linear potential VLIN(h) and the GCH potential VGCH (h). Let us now turn to the
case where the wall bears interfacial charges (σw > 0). Figure 7(a) compares the linear and
the GCH interaction potentials with the PB-based potential, again for κa = 5.0 and9c = 1.0
and9c = 2.0 as in figure 5(a), but now with a surface wall potential of9w = 1.0. Again, the
analytic potentials overestimate the correct potential for larger values of9c, which shows more
clearly in figure 7(b), where the curves of figure 7(a) have been used to calculate the percentage
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Figure 7. Charged wall, κa fixed: comparison of the effective wall–colloid interaction potentials
based on (i) the linear potential (LIN), equation (41), (ii) the approximate potential (GCH),
equation (48), and (iii) the full numerical solution of the PB equation. For a fixed wall–surface
potential 9w = 1.0, the colloid surface potential is varied from 9c = 1.0 to 9c = 2.0. (a)
The interaction potential, 4πλBκβV (h), versus the wall–colloid minimum separation, κ(h − a).
(b) The accuracy of the effective potentials in (a), percentage error versus κ(h− a).

error according to equation (50). Again, for 9c = 1, both potentials VLIN(h) and VGCH (h)
show error less than 10% for almost all values of κ(h− a), while the error for 9c = 2.0 can
reach values between 30% and 40%. Because the Stillinger potential is part of VLIN(h) and
VGCH (h), this is what one would have anticipated from the failure of the Stillinger potential
in this weakly non-linear regime found in figure 5(b). Figure 7(b) also demonstrates that
VGCH (h) always has a smaller error than VLIN(h), a statement whose validity we have tested
for a large number of input parameters. As VLIN(h) is merely a limiting case of VGCH (h) in
the limit of small surface wall potentials, this is not surprising; it is still reassuring to know
that the replacement of equation (35) by φGC(z) of equation (47) in the derivation of VGCH (h)
does indeed mean an improvement of the potential. As VLIN(h) is thus contained in VGCH (h),
we do not need to consider it any further and can instead concentrate on VGCH (h).

An overview can again be obtained from a contour plot in the (κa, κh) parameter plane,
figure 8, showing regions where the error is less than 10%. We have generated this contour plot
by analysing error curves like those given in figure 7(b). We tested eight different combinations
of9w and9c, fixing the colloid surface potential at9c = 1.0 and varying9w between one and
four in figure 8(a), while fixing the wall potential and varying the colloid surface potential in
figure 8(b). The two figures together now help us to identify the region of the four-dimensional
parameter space where the GCH potential is a reliable and useful effective potential:

(i) As long as 9c � 1 and κ(h− a) is well above one, VGCH (h) is almost always a suitable
potential, working well even for very large surface–wall potentials and showing only a
very weak dependence on the colloidal size. That is what one can learn from figure 8(a).
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Figure 8. Charged wall, κa varies: an error contour diagram as in figure 6, but now for the GCH
potential, equation (48). The arrows point to the regions with under 10% error.

(ii) If the colloid surface potential9c is increased (figure 8(b)), the performance of VGCH (h)
becomes poorer, and the region in the (κa, κh) plane where VGCH (h) has a small error
shrinks. For example, if 9w:9c ≡ 2:2, VGCH (h) is useful only if κa is small (κa < 2)
(dashed–dotted line figure 8(b)).

We pointed out earlier that both non-linear potentials, equation (48) and equation (49),
suffer from the same basic problem. In linear theory, the total electrostatic potential around
interacting charged objects in an electrolytic solution can be obtained just by adding the separate
potentials for each object in isolation, and as a result of this superposition principle the effective
interaction between the objects is a simple sum of terms associable with the different charge
distributions. This is not valid in non-linear theory, and still both potentials, equation (48)
and equation (49), are obviously based on this principle as they are sums of direct and image-
charge interactions. One might wonder whether this inconsistency is responsible for the bad
performance of VGCH (h) at high 9c, and whether or not the inclusion of the image-charge
effect in equation (48) improves the effective potential at all. Figure 9 clarifies this point. We
plotted the percentage error of VGCH (h) for9w:9c ≡ 1:1 and9w:9c ≡ 2:2, with (solid line)
and without (dashed line) the first term in equation (48). We first observe that both lines in both
cases converge for larger values of κh; then the distance is too large for the image charge to
have any effect at all (the image-charge interaction goes as e−2κ(h−a) and the direct interaction
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Figure 9. The contribution of image-charge term to the GCH potential, equation (48), for two
combinations of 9w :9c , κa = 10.0: the full lines show the error of the GCH potential calculated
with image-charge contributions (ICC), while the dashed lines show the error calculated with no
image-charge contributions (NICC).

as e−κ(h−a)). We furthermore observe that for 9w:9c ≡ 1:1 inclusion of the image-charge
contribution considerably improves the accuracy of the potential, in particular in the range
1 < κ(h− a) < 3. The case 9w:9c ≡ 2:2, on the other hand, shows that adding the image-
charge term can also increase the error, thus demonstrating that the direct and the image-charge
interactions are not additive in the non-linear regime. But we also note that the error is still
quite large even if the image-charge effect is ignored.

Since it is the aim of this study not only to test approximate theories, but also to recommend
for any given set of parameters (κa, κh,9w,9c) a handy analytical expression that is as close
as possible to the mean-field result, we have to check whether one may substantially enlarge
the total region with an error below 10% in figure 8 by totally ignoring the image-charge effect.
The answer is negative. For the specific combinations of parameters which we found VGCH (h)
to be a suitable potential for, we have explicitly tested that inclusion of the image-charge effect
does indeed improve the agreement with the PB-based potential. This is not so for VDJG(h),
which we discuss now.

The DJG potential VDJG(h). Like in figure 9, we check in figure 10 the importance
of the image-charge interaction term, but now in the DJG potential VDJG(h). The same
parameters as in figure 9 are used. Again, including the image-charge effect improves the
result for 9w:9c ≡ 1:1, but causes a larger error for 9w:9c ≡ 2:2. In contrast to VGCH (h)
in figure 9, VDJG(h) becomes better at larger distances when going from 9w:9c ≡ 1:1 to
9w:9c ≡ 2:2. One recognizes that for 9w:9c ≡ 2:2 the error without the image-charge
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contribution remains well under 10%, while it goes up to 20% if the image-charge term is
taken into account. This shows that naively adding the image-charge contribution can render
a potential useless that would otherwise reproduce the mean-field result well (error < 10%).
We have checked this more systematically by producing 10% error contour maps as in figure 8
for the DJG potential with and without the image-charge contribution. We have found that
for low values of 9c and/or low values of κa, the first term in equation (49) is important.
However, comparing the errors of VDJG(h) and VGCH (h) in this regime we have found that
VGCH (h) generally produces a smaller error and is thus preferable to VDJG(h). On the other
hand, in the parameter region where VDJG(h) performs better than VGCH (h), inclusion of the
image-charge effect may considerably increase the error of VDJG(h), as seen for example in
figure 10 for 9w:9c ≡ 2:2. The conclusion to be drawn from this is that adding direct and
image-charge interactions as is done in equation (49) introduces an error that can sometimes
be larger than the error that one produces by completely ignoring image charges. Of course,
this conclusion is not meant to deny the existence of image charges, nor is it to say that they are
unimportant; it just refers to the quality and usefulness of certain approximations. Moreover,
it is true only in some region of parameter space relevant for the DJG potential. We therefore
discard the image-charge term in equation (49) in the following, and consider henceforth

βVDJG2(h) = 16aγcγw
λB

e−κ(h−a). (51)
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For this potential we present in figure 11 the 10% error contour plot in the (κa, κh) plane for
various combinations of 9w:9c. As is evident from this figure, the DJG potential becomes
almost always tolerably good just provided that κa is sufficiently large. With increasing 9c
the region with an error below 10% becomes larger, while it becomes smaller with increasing
9w. 9w:9c ≡ 4:2 produces the same error boundary as 9w:9c ≡ 3:2.
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Figure 11. An error contour diagram as in figure 6 and figure 8, but now for the DJG potential,
equation (51), for various combinations of 9w :9c .

We have seen that VGCH (h) cannot be used if the colloidal surface potential is high and κa
is at the same time large. But this is exactly the parameter regime where βVDJG2(h) performs
exceedingly well. If one compares, for example, the 9w:9c ≡ 2:2 error lines in figures 8 and
11, one can see that VGCH (h) and βVDJG2(h) are complementary in that VGCH (h) works for
κa < 2 while βVDJG2(h) is useful if κa is roughly greater than 5.

In summary, we have outlined the regions of validity of the three potentials VSt (h),
VGCH (h), and βVDJG2(h) using 10% error contour plots in figures 6, 8, and 11; this should
be of use if one wishes to estimate the quality of one of the three potentials starting from
a given set of input parameters (κa, κh,9w,9c). This we regard as the main result of this
investigation.

4.2. A whole suspension of colloids: an interfacial Poisson–Boltzmann cell model

So far we have considered the interaction between a single colloidal sphere and a wall. If
this colloid is part of a concentrated suspension of colloids [46], things become different. We
know, in fact, that in the bulk the effective colloid/colloid potentials may be strongly affected
by the other colloids in the suspension (in particular in the case of low added salt [47]). As
long as the mean distance D between two colloids in the suspension is large compared to the
thickness κ−1 of the double layer around the colloid, one can expect pairwise-additive effective
Yukawa potentials between two colloids. However, if κD becomes smaller than 1, the double
layer around each colloid extends over a region in which there might be many other colloids.
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This implies (i) that the colloids see each other as only partially screened particles, and (ii)
that many colloids will interact with each other at the same time. It is still an open question
how best to treat this complicated many-body problem theoretically [29].

A way commonly used to approximately determine the electrostatic potential inside a
concentrated suspension of colloids is opened up by the so-called ‘PB cell models’ [49, 50].
These cell models rely on the assumption that every colloidal particle of the suspension
experiences the same environment, which we know is strictly true only in the crystalline
phase. Each colloid is assumed to be located at the centre of its cell, and all cells of the
suspension have the same volume and shape. It therefore suffices to consider just one cell
instead of the whole suspension and to calculate the electrostatic potential inside this cell
only. The presence of the other (screened) colloids is taken into account by the appropriate
choice of the boundary conditions for the PB equation. This constitutes a BVP whose solution
provides us with the mean electrostatic potential inside the cell and thus the microionic density
distribution. From it, one can then derive general thermodynamic quantities of the suspension,
such as the osmotic pressure [51], or more specific quantities, such as the effective pair forces
between the particles [48]. Such PB cell models have been used not only for colloids in
suspensions [48, 51–55], but, more importantly, for suspensions of polyelectrolytes [50, 57],
and also for a PB theory of swollen clay [56].

In regard to our problem of an interfacial colloid interacting with a wall, a PB cell model
can also be useful for estimating the effect which the other colloids of the suspension may have
on the interfacial colloid. In a recent paper, we suggested a PB cell model that is adapted to
the interfacial geometry [58]. The cell of a colloid in the vicinity of the wall is now assumed
to have the shape of a cylinder of radius r0 and length z1. r0 is given by the volume of the
cell, VWS = πr2

0z1, with the additional assumption that the cell has the same aspect ratio as a
cube, z1 = 2r0. The macroion inside this cell has a variable position. At z = 0, the dielectric
constant of the medium changes from ε′ to ε. No interfacial charges have been allowed for.

The BVP to study is similar to that of equation (2). The main difference is the appearance
of two additional surfaces, due to the cell approximation, and thus of additional boundary
conditions. These surfaces are (i) the curved surface of the cylinder and (ii) the straight side
of the cylinder directed towards the bulk suspension. The boundary conditions follow from
the assumption that the distance from any point on each of these two surfaces to the colloid
in the centre of the cell is equal to the distance to any of the neighbouring colloids, so the
normal component of the electric field at such a point must vanish for symmetry reasons (if the
colloid is not in the centre of its cell, the boundary conditions become more complicated [58]).
From the solution to this BVP one can then calculate the force acting on the colloid. Clearly,
it is directed in the z-direction and we abbreviate its z-component as Fz. This force can most
conveniently be obtained by integrating the stress tensor over the cell surface. It is given just
by the difference F(0)−F(z1) between the forces which the colloid experiences from the two
straight sides of the cylindrical cell. F(0) (F(z1)) here refers to the force coming from the
side bordering the interface (bulk suspension).

Figure 12 shows this net force Fz acting on the interfacial colloid as a function of the
ratio of the dielectric constants of the substrate and the solution, ε′/ε, for various values of the
reduced colloidal charge and the volume fraction of the suspension φvol . The colloid is situated
in the centre of its cell (other positions are considered in [58]). We see that, contrary to the
case for a single interfacial colloid, the force acting on the colloid at this specific wall–colloid
distance becomes attractive. This is so for all φvol and colloidal charges considered. The
force is largest when the image charges vanish, i.e. when ε′ = ε, and it is zero when ε′ = 0.
The force increases with increasing ε′/ε, with increasing volume fraction, and with increasing
colloidal charge.
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and grows with increasing volume fraction
φvol and scaled colloidal charge ZλB/2a.

This result is surprising only at first glance, and has a simple explanation. The ions inside
the interfacial cell are exposed not only to the image charges from the region z < 0, but also
to the (real!) charges of the neighbouring cell at z > z1. These charges are taken into account
implicitly by the boundary conditions. For all cases where ε′ < ε, the image charges are not
of the same magnitude as the original charges, but a little weaker—see equation (13)—and
will thus exert a force on the colloid that is—though repulsive—not strong enough to balance
the forces exerted from the corresponding ions in the cell at z > z1. Therefore, the net force
is attractive. As a result, the equilibrium position of the interfacial colloid is no longer at the
centre position of its cell, but will be shifted towards the wall. Only in the case where ε′ is zero
do the image charges have the same magnitude as the original charges—equation (13)—and
thus are able to match the charges from z > z1: a totally symmetrical, bulklike situation is
then recovered where there is no net force on the colloidal particle; see figure 12. A more
systematic discussion of this effect can be found in [58], where we also calculated polarization
surface charge densities at the wall and performed MC calculations to test the importance of
finite-size effects.

In summary, we see that, when a whole suspension of colloids is considered, the repulsive
forces which we have analysed for a single colloid next to a wall compete with the forces
arising from all of the other colloids of the suspension. As we have seen, it can easily happen
that the forces coming from the bulk colloids are stronger than the wall–colloid force, thus
inducing a structural rearrangement of the colloidal suspension near a dielectric interface. We
make this point in order to emphasize that the wall–colloid interaction potentials given in this
article must be set in relation to the bulk colloid/colloid interaction if they are to be used to
derive structural information on a colloidal suspension.

4.3. A single colloid near an interface: a TIRM experiment

To demonstrate that the effective wall–colloid interaction potentials discussed in this paper
can actually be observed in an experiment, we want to close this article by briefly reporting
the results of a recent TIRM [8] experiment [60]. The experimental details will be reported
elsewhere [60]; here we restrict ourselves to a rough sketch of the main idea of this experiment.
A colloidal sphere (polystyrene; a = 10µm) of unknown negative surface charge density σc is
brought into a highly deionized (salt concentration in the µM regime) electrolytic suspension.
Due to gravitation, the particle sinks to the bottom of the glass container, and is thus located in
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the vicinity of a glass surface. This surface bears again an unknown amount of negative surface
charge (σw), so there will be double layers both in front of the glass surface and surrounding
the colloid. The colloid, being repelled by the repulsive double-layer forces and attracted by
gravitation, will thus find a stable position at a finite distance from the glass interface, with
small fluctuations in position due to Brownian forces.

When light is totally reflected at an interface, an evanescent field is created whose intensity
I decays exponentially with distance z perpendicular to the interface, I (z) = I0e−βz, with β
being the inverse penetration depth of the evanescent wave. What is important here is that β is a
quantity known a priori. The central idea of the TIRM method now is to measure the scattered
intensity of the interfacial colloidal particle, which is located in this evanescent wave, and
to deduce the wall–colloid distance from the measured intensity through the known relation
I (z) = I0e−βz. In order to obtain the spatial dependence of the potential energy of the particle,
one has to measure the separation distances sampled by the colloidal sphere for a statistically
long period of time. From this, the probability of finding the particle at any separation distance
can be calculated; it is related to the potential energy via the Boltzmann distribution. This
potential energy is the sum of the gravitational and double-layer potentials. Figure 13 shows
the measured potentials for ten different salt concentrations (10 nm < κ−1 < 100 nm) when
the gravitational contribution is subtracted. Thus, figure 13 represents a direct experimental
observation of what we have discussed in this article: the effective wall–colloid potentials due
to double-layer forces.
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Figure 13. Effective double-layer potentials between a glass surface and a colloidal sphere,
experimentally determined for various salt concentrations using the TIRM method [60]. The
function 16ae−κ(h−a)/λB is plotted as solid line.

To find out which of the approximate potentials, equation (48) or equation (51), is
appropriate for this experiment, we need to specify the surface potentials using equation (45),
which however is possible only if we know the surface densities σc, σw. In reference [60],
we explain how to use such salt-dependent measurements of double-layer forces to determine
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surface densities. We find that9w and9c are both of the order of one. While these values lie
within the range studied theoretically here, the values of κa are not. The double layers in our
experiment were extremely thin, with values of κa ranging between 50 and 500, which is far
beyond the range studied in figures 8 and 11. Such high values of κa cannot be calculated with
our numerical scheme for solving the PB equation, and one thus depends on extrapolating a
sequence of error curves for increasing κa. The general trend of figure 11 suggests that since
the DJG potential in equation (51) seems to work for every combination of9w:9c just as long
as the κa-value is large enough, the agreement with the PB theory should become better as
the κa-value becomes larger . This is indeed the case, as we have shown in reference [60]
for a set of parameters adapted to the experimental conditions. The calculation shows that the
potential of equation (51), βV (h) = 16aγcγwe−κ(h−a)/λB , should be almost identical to the
full mean-field result in the parameter regime under consideration. As for the image-charge
contribution, we found that it becomes less important as κa becomes higher, and figure 10
shows that at κa = 10.0 the image-charge contribution for 9w:9c = 1:1 already has a rather
small effect in the distance regime explored experimentally (κ(h − a) > 2). Thus in our
experiment with κa > 50, the colloid is too large and too far away from the surface to be
sensitive to image-charge repulsion.

Recalling that the γ -factors in this potential still depend on the salt concentration—
see equation (46)—we now understand that the salt dependence of the interaction potentials
observed in figure 13 comes in through the product γwγc in the interaction potential. Given
the values of σw and σc, we can determine γwγc for all measured salt concentrations. Dividing
each experimentally determined potential in figure 14 by its value of γwγc, we see (in figure 14)
all ten potential curves collapsing onto one master curve (solid line), which is just the function
βV (h)/γcγw = 16ae−κ(h−a)/λB . The agreement is remarkably good and demonstrates very
nicely that and how precisely the wall–colloid interaction potential of equation (51) can be
measured experimentally.
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5. Conclusions

We have been concerned with the question of how a charged sphere inside an electrolytic
solution of dielectric constant ε interacts with a charged wall of dielectric constant ε′. We first
considered the colloidal sphere as a point charge, and discussed its interaction with both an
uncharged and a charged wall. Renormalizing the charge by a factor gh, one can afterwards
correct these interaction potentials to account for the finite size of the colloidal sphere. Starting
from these linear potentials, we arrived at two potentials, approximately valid also in the non-
linear regime: equation (48) (GCH potential) and equation (49) (DJG potential). The range of
validity of these potentials was then checked by comparing them with the numerical solution
to the full PB equation. We may summarize the main points of this paper as follows:

• For an uncharged wall of dielectric constant ε′, the effective wall–colloid potential is
repulsive if ε′/ε → 0 and attractive if ε/ε′ → 0. A charged colloid in an aqueous
suspension will therefore be repelled from an air/water interface, and attracted to a
metal/water interface. In contrast to what was said in [11] and [31], there is no electrostatic
attraction of colloids to an air/water interface.

• Even if there are no images charges present (ε′ = ε), a colloid is still repelled from an
uncharged interface due to a confinement effect.

• The h-dependent renormalization factor gh is found to be only a few per cent different
from g∞.

• In linear theory and if ε′/ε → 0, the interaction of a colloid of finite size with an uncharged
wall is just half of the usual repulsive Yukawa potential of DLVO theory between two like-
charged spheres (see βVSt (h) of equation (32)), where one sphere is the screened colloid
at z = h and the other, being located at z = −h, represents nothing but the screened
image of the colloid. Then only the factor 1/2 in the potential remains as a reminder of
the fact that we are concerned not with a colloid/colloid interaction, but with a colloid/wall
interaction.

• One can reuse Stillinger’s potential for a point charge near an uncharged wall as the
Green’s function for the linearized Poisson–Boltzmann equation for the case of an arbitrary
distribution of fixed charges. Using the point-charge approximation, the effective potential
is then a sum of the potential for an uncharged wall and the interaction of the colloid with
the unperturbed double layer of the wall.

• We checked the validity of βVst (h) for the uncharged wall and found that it produces an
error below 10% for all values of κa as long as κ(h− a) > 0.61 and 9c � 1.

• Adding to βVst (h) the interaction energy of a renormalized point charge Z/g∞ in the
unperturbed Gouy–Chapman layer, we arrive at the GCH potential, equation (48), which
we have found to be appropriate for all κa provided that κ(h − a) > 2 and 9c � 1, in
accord with the range of validity found for βVst (h) alone. We have explicitly checked
that inclusion of the image-charge contribution improves the accuracy.

• If9c > 1, the DJG potential, equation (49), without image-charge contributions is almost
always tolerably good for all κ(h − a) provided only that κa is sufficiently large (error
below 10% if κa > 6 for9w:9c ≡ 2:2). With increasing9c this region with error below
10% becomes larger, while it becomes smaller with increasing 9w.

• When a suspension of colloids is considered, we need to be aware of the fact that the wall–
colloid interaction potential must be set in relation to the bulk colloid/colloid interaction
potential. The latter is the one that is more repulsive in the case of an uncharged wall with
ε′/ε > 0. The equilibrium position of the interfacial colloid in its cell is therefore slightly
shifted towards the wall.
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• We performed a TIRM experiment to measure the effective wall–colloid potential and
found a nice agreement of the DJG potential and the experimental data, with the colloidal
surface charge density being the only open parameter.

Appendix A. Solution of the Poisson–Boltzmann equation in bispherical coordinates

We aim to explain here in some detail the procedures followed in solving the PB BVP stated
in equation (2) for φ with constant-charge boundary conditions. Scaling all lengths by κ−1

and introducing

?w = λBσw/κ
?c = λBσc/κ (A.1)

the BVP of equation (2) for the special case ε′ = 0 can be written in the following form:

∇2φ = sinh φ �r ∈ G
�nw ∇φ = 4π?w �r ∈ ∂Gw
�nc ∇φ = 4π?c �r ∈ ∂Gc
φ = 0 �r → ∞.

(A.2)

In the absence of any charged body (e.g. the colloid) in the electrolyte, this BVP is solved by
the Gouy–Chapman potential φGC given in equations (44) and (45). We define the potential
φ̃ as the difference of the true potential φ and φGC which leads to a new BVP in φGC and φ̃ as
follows:

∇2φ̃ = sinh(φ̃ + φGC)− sinh φGC �r ∈ G
�nw ∇φ̃ = 0 �r ∈ ∂Gw
�nc ∇φ̃ = 4π?c − �nc ∇φGC �r ∈ ∂Gc
φ̃(∞) = 0 �r → ∞.

(A.3)

We thus calculate not the double layer in front of the wall, but its perturbation due to the
charged colloid, a trick which has primarily computational advantages. It would be even
better if we could also subtract the spherical double layer around the isolated sphere, but this
is not established as being appropriate analytically. For purposes of achieving good accuracy
in the numerical scheme, we now solve this BVP in bispherical coordinates [59] (bsc) (η, θ ),
as has been done by others before [21, 41, 42].

In the bsc system, the region external to the spheres (colloid and colloid image) is the
rectangular domain (figure A1): −η0 � η � η0 and 0 � θ � π , while the regions in the
interior of the sphere correspond to the following domains: (i) colloid image: −∞ � η � −η0

and 0 � θ � π ; (ii) real colloid: η0 � η � ∞ and 0 � θ � π . Since the spheres are of the
same size, it is sufficient to consider the real half-space, i.e. the rectangular domain 0 � η � η0

and 0 � θ � π .
The bsc are related to the cylindrical coordinates (κB, κz), where z is the component

normal to the wall and B (=
√
x2 + y2) is the radial part:

z = b sinh η

cosh η − cos θ

B = b sin θ

cosh η − cos θ
.

(A.4)
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Figure A1. The advantage of using bispherical coordinates: the region exterior to both spheres in
(a) becomes a rectangle in the (η, θ ) plane in (b).

The regions of constant η are spheres of radius Rη; their centres are at a distance Cη:

Rη = κb

sinh η

Cη = κb cosh η

sinh η
= κb coth η.

(A.5)

The constants b and η0 are then defined by requiring thatRη0 = κa andCη0 = κh. We can now
write the BVP in equation (A.3) in terms of (η, θ) coordinates by expressing the Laplacian
in bsc [59] and using the boundary conditions for φ̃ on the four sides of the rectangle (see
figure A1(b)) as follows:

∂ηφ̃
∣∣
η=η0

= 2κb sinh(9W/2)
1 − cosh η0 cos θ

(cosh η0 − cos θ)2
− 4πκb?c
(cosh η0 − cos θ)

∂ηφ̃
∣∣
η=0 = ∂θ φ̃

∣∣
θ=π = ∂θ φ̃

∣∣
θ=0 = φ̃(η = 0, θ = 0) = 0.

(A.6)

For the new BVP we now employ the Newton–Raphson iteration scheme, which takes the
form

∇2φ̃n+1 − cosh(φ̃n + φGC)φ̃n+1 = sinh(φ̃n + φGC)− sinh φGC − cosh(φ̃n + φGC)φ̃n (A.7)

where a new estimate φ̃n+1 of the solution of the non-linear PB equation is obtained from a
previous estimate, φn.
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Appendix B. Force via the stress tensor

The force �F acting on a particle enclosed by a surface S can be calculated by integrating the

stress tensor ��T :

�F =
∫
S

dS ��T · �n (B.1)

where �n is a unit normal pointing into the surface. Here the total stress tensor is the sum of an
osmotic pressure term and a Maxwell stress

��T =
(
D +

ε

8π
E2

)
��I − ε

4π
�E �E . (B.2)

�E is the electric field, ��I is a unit tensor, andD is the difference in local osmotic pressure from
that in the bulk electrolyte:

βD = (ρ+ + ρ− − 2cs) = 2cs(cosh φ − 1) (B.3)

where ρ± = cse∓φ (cs is the bulk concentration). Rewriting the stress tensor in scaled units
( �E = eβ �E) we have

β
��T = 2cs(cosh φ − 1) +

1

8πλB

[
E2��I − 2 �E �E

]
. (B.4)

Since the system is symmetrical about the axis, z, joining the centres of the particle and the
particle image (colloid/colloid image) (see figure A1), the direction of the force on the particle
is normal to the wall, i.e.

βFz =
∫
Sηc

dSηc �ez · β ��T · �n. (B.5)

The enclosing surface Sηc is an η-coordinate surface (0 � ηc � η0). �n is then a vector normal
to the ηc-coordinate surface, �n = �eη, where �eη and �eθ are the unit vectors in the bsc system:

�eη = ∂η�r∣∣∂η�r∣∣
�eθ = ∂θ �r

|∂θ �r| (B.6)

with �r = z(η, θ)�ez + B(η, θ)�eB from equation (A.4). Therefore,

�ez · ��T · �n = �ez · ��T · �eη = Tηη �ez · �eη + Tθη �ez · �eθ (B.7)

and

�eη · �ez = 1 − cosh η cos θ

cosh η − cos θ

�eθ · �ez = −
(

sinh η sin θ

cosh η − cos θ

)
.

(B.8)

With ∫
dSηc =

∫
2π

(κb)2 sin θ

(cosh ηc − cos θ)2
dθ (B.9)

equation (B.5) then becomes

βFz = 2π
∫ π

0

{[
2cs(cosh φ − 1) +

1

8πλB
(E2

θ − E2
η)

]
1 − cosh ηc cos θ

cosh ηc − cos θ

+

[
1

4πλB
EηEθ

]
sinh ηc sin θ

cosh ηc − cosh θ

}
(κb)2 sin θ

(cosh ηc − cos θ)2
dθ. (B.10)
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Recalling that cs = κ2/8πλB and choosing the enclosing surface Sηc to be the interfacial wall
corresponding to ηc = 0, the dimensionless force f = 4πλBβFz takes the form

f = π
∫ π

0
dθ

[
2κ2(cosh φ − 1) + E2

θ − E2
η

] (κb)2 sin θ

(1 − cos θ)2
. (B.11)

The electric field Eη/θ can be written in terms of φ:

bEη = (1 − cos θ) ∂ηφ bEθ = (1 − cos θ) ∂θφ

and substituting this in equation (B.11) we finally write the reduced force as

f = π
∫ π

0
dθ

(
2(κb)2 sin θ

(1 − cos θ)2
(cosh φ − 1) +

[
∂θφ

2 − ∂ηφ2
]

sin θ

)
η=ηc=0

. (B.12)

Noting that ∂ηφ at η = 0 is known from our boundary condition, we have that

∂ηφ
2
∣∣
η=0 = (∂ηφGC)2

∣∣
η=0 =

(
2κb

1 − cos θ

)2

sinh29w/2 =
(

2κb

1 − cos θ

)2 1

2
(cosh(9w)− 1)

(B.13)

and we can simplify equation (B.12) to

f = π
∫ π

0
dθ

(
2(κa sinh η0)

2 sin θ

(1 − cos θ)2
[cosh φ − cosh9w] +

(
∂φ

∂θ

)2

sin θ

)
η=0

. (B.14)

This force can easily be calculated once φ is known. All of the error estimates of the analytical
potentials made in this paper were made on the basis of forces. If potentials are plotted, we
have obtained them from numerically integrating the calculated forces.
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